The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A041419 Denominators of continued fraction convergents to sqrt(224). 2
 1, 1, 29, 30, 869, 899, 26041, 26940, 780361, 807301, 23384789, 24192090, 700763309, 724955399, 20999514481, 21724469880, 629284671121, 651009141001, 18857540619149, 19508549760150, 565096933903349, 584605483663499, 16934050476481321, 17518655960144820 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The following remarks assume an offset of 1. This is the sequence of Lehmer numbers U_n(sqrt(R),Q) for the parameters R = 28 and Q = -1; it is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for all positive integers n and m. Consequently, this is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, May 28 2014 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Eric W. Weisstein, MathWorld: Lehmer Number Index entries for linear recurrences with constant coefficients, signature (0,30,0,-1). FORMULA G.f.: -(x^2-x-1) / (x^4-30*x^2+1). - Colin Barker, Nov 17 2013 a(n) = 30*a(n-2) - a(n-4) for n > 3. - Vincenzo Librandi, Dec 17 2013 From Peter Bala, May 28 2014: (Start) The following remarks assume an offset of 1. Let alpha = sqrt(7) + 2*sqrt(2) and beta = sqrt(7) - 2*sqrt(2) be the roots of the equation x^2 - sqrt(28)*x - 1 = 0. Then a(n) = (alpha^n - beta^n)/(alpha - beta) for n odd, while a(n) = (alpha^n - beta^n)/(alpha^2 - beta^2) for n even. a(n) = Product_{k = 1..floor((n-1)/2)} ( 28 + 4*cos^2(k*Pi/n) ). Recurrence equations: a(0) = 0, a(1) = 1 and for n >= 1, a(2*n) = a(2*n - 1) + a(2*n - 2) and a(2*n + 1) = 28*a(2*n) + a(2*n - 1). (End) MATHEMATICA Denominator[Convergents[Sqrt, 30]] (* Harvey P. Dale, May 07 2012 *) CoefficientList[Series[(1 + x - x^2)/(x^4 - 30 x^2 + 1), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 17 2013 *) PROG (MAGMA) I:=[1, 1, 29, 30]; [n le 4 select I[n] else 30*Self(n-2)-Self(n-4): n in [1..100]]; // Vincenzo Librandi, Dec 17 2013 CROSSREFS Cf. A041418, A040209, A002530. Sequence in context: A042730 A042732 A042734 * A042736 A042737 A042738 Adjacent sequences:  A041416 A041417 A041418 * A041420 A041421 A041422 KEYWORD nonn,frac,easy AUTHOR EXTENSIONS More terms from Colin Barker, Nov 17 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 6 04:46 EDT 2020. Contains 335475 sequences. (Running on oeis4.)