login
A041417
Denominators of continued fraction convergents to sqrt(223).
2
1, 1, 14, 15, 434, 449, 6271, 6720, 194431, 201151, 2809394, 3010545, 87104654, 90115199, 1258602241, 1348717440, 39022690561, 40371408001, 563850994574, 604222402575, 17482078266674, 18086300669249, 252603986966911, 270690287636160, 7831932040779391
OFFSET
0,3
LINKS
FORMULA
G.f.: -(x^2-x-1)*(x^4+15*x^2+1) / (x^8-448*x^4+1). - Colin Barker, Nov 17 2013
a(n) = 448*a(n-4) - a(n-8). - Vincenzo Librandi, Dec 17 2013
MATHEMATICA
Denominator[Convergents[Sqrt[223], 30]] (* Vincenzo Librandi, Dec 17 2013 *)
LinearRecurrence[{0, 0, 0, 448, 0, 0, 0, -1}, {1, 1, 14, 15, 434, 449, 6271, 6720}, 30] (* Harvey P. Dale, Apr 19 2019 *)
PROG
(Magma) I:=[1, 1, 14, 15, 434, 449, 6271, 6720]; [n le 8 select I[n] else 448*Self(n-4)-Self(n-8): n in [1..40]]; // Vincenzo Librandi, Dec 17 2013
CROSSREFS
Sequence in context: A033050 A225757 A041416 * A041418 A042733 A225758
KEYWORD
nonn,frac,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Nov 17 2013
STATUS
approved