login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numerators of continued fraction convergents to sqrt(218).
2

%I #14 Jun 13 2015 00:49:24

%S 14,15,59,192,251,7220,7471,29633,96370,126003,3624454,3750457,

%T 14875825,48377932,63253757,1819483128,1882736885,7467693783,

%U 24285818234,31753512017,913384154710,945137666727,3748797154891,12191529131400,15940326286291,458520665147548

%N Numerators of continued fraction convergents to sqrt(218).

%H Vincenzo Librandi, <a href="/A041406/b041406.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,502,0,0,0,0,1).

%F G.f.: -(x^9-14*x^8+15*x^7-59*x^6+192*x^5+251*x^4+192*x^3+59*x^2+15*x+14) / (x^10+502*x^5-1). - _Colin Barker_, Nov 08 2013

%t Numerator[Convergents[Sqrt[218], 30]] (* _Harvey P. Dale_, Oct 22 2013 *)

%Y Cf. A041407.

%K nonn,cofr,frac,easy

%O 0,1

%A _N. J. A. Sloane_.

%E More terms from _Colin Barker_, Nov 08 2013