login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numerators of continued fraction convergents to sqrt(216).
2

%I #12 Jun 13 2015 00:49:24

%S 14,15,44,147,338,485,13918,14403,42724,142575,327874,470449,13500446,

%T 13970895,41442236,138297603,318037442,456335045,13095418702,

%U 13551753747,40198926196,134148532335,308495990866,442644523201,12702542640494,13145187163695

%N Numerators of continued fraction convergents to sqrt(216).

%H Vincenzo Librandi, <a href="/A041402/b041402.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,970,0,0,0,0,0,-1).

%F G.f.: -(x^11 -14*x^10 +15*x^9 -44*x^8 +147*x^7 -338*x^6 -485*x^5 -338*x^4 -147*x^3 -44*x^2 -15*x -14) / ((x^4 -10*x^2 +1)*(x^8 +10*x^6 +99*x^4 +10*x^2 +1)). - _Colin Barker_, Nov 07 2013

%t Numerator[Convergents[Sqrt[216], 30]] (* _Vincenzo Librandi_, Nov 01 2013 *)

%Y Cf. A041403.

%K nonn,cofr,frac,easy

%O 0,1

%A _N. J. A. Sloane_.

%E More terms from _Colin Barker_, Nov 07 2013