login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numerators of continued fraction convergents to sqrt(182).
2

%I #14 Jun 13 2015 00:49:23

%S 13,27,715,1457,38597,78651,2083523,4245697,112471645,229188987,

%T 6071385307,12371959601,327742334933,667856629467,17692014701075,

%U 36051886031617,955041051523117,1946133989077851,51554524767547243,105055183524172337,2782989296396028005

%N Numerators of continued fraction convergents to sqrt(182).

%H Vincenzo Librandi, <a href="/A041336/b041336.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (0,54,0,-1).

%F G.f.: -(x+1)*(x^2-14*x-13) / (x^4-54*x^2+1). - _Colin Barker_, Nov 06 2013

%F a(0)=13, a(1)=27, a(2)=715, a(3)=1457, a(n)=54*a(n-2)-a(n-4). - _Harvey P. Dale_, Mar 27 2015

%t Numerator[Convergents[Sqrt[182], 30]] (* _Vincenzo Librandi_, Nov 01 2013 *)

%t LinearRecurrence[{0,54,0,-1},{13,27,715,1457},30] (* _Harvey P. Dale_, Mar 27 2015 *)

%Y Cf. A041337.

%K nonn,cofr,frac,easy

%O 0,1

%A _N. J. A. Sloane_.

%E More terms from _Colin Barker_, Nov 06 2013