login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A041313 Denominators of continued fraction convergents to sqrt(170). 2
1, 26, 677, 17628, 459005, 11951758, 311204713, 8103274296, 210996336409, 5494008020930, 143055204880589, 3724929334916244, 96991217912702933, 2525496595065192502, 65759902689607707985, 1712282966524865600112, 44585117032336113310897 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (26,1).

FORMULA

a(n) = F(n, 26), the n-th Fibonacci polynomial evaluated at x=26. - T. D. Noe, Jan 19 2006

a(n) = 26*a(n-1) + a(n-2) for n>1, a(0)=1, a(1)=26. G.f.: 1/(1-26*x-^2). [Philippe Deléham, Nov 21 2008]

MATHEMATICA

a=0; lst={}; s=0; Do[a=s-(a-1); AppendTo[lst, a]; s+=a*26, {n, 3*4!}]; lst [ Vladimir Joseph Stephan Orlovsky, Oct 27 2009]

Denominator[Convergents[Sqrt[170], 30]] (* Vincenzo Librandi, Dec 15 2013 *)

LinearRecurrence[{26, 1}, {1, 26}, 20] (* Harvey P. Dale, Jul 26 2017 *)

CROSSREFS

Cf. A041312, A040156.

Sequence in context: A188697 A188696 A009970 * A042302 A031423 A097835

Adjacent sequences:  A041310 A041311 A041312 * A041314 A041315 A041316

KEYWORD

nonn,frac,easy

AUTHOR

N. J. A. Sloane.

EXTENSIONS

An additional term from Colin Barker, Nov 15 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 20 04:05 EST 2017. Contains 294959 sequences.