login
Numerators of continued fraction convergents to sqrt(170).
3

%I #30 Dec 26 2023 07:42:16

%S 13,339,8827,229841,5984693,155831859,4057613027,105653770561,

%T 2751055647613,71633100608499,1865211671468587,48567136558791761,

%U 1264610762200054373,32928446953760205459,857404231559965396307,22325438467512860509441,581318804386894338641773

%N Numerators of continued fraction convergents to sqrt(170).

%H Vincenzo Librandi, <a href="/A041312/b041312.txt">Table of n, a(n) for n = 0..200</a>

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (26,1).

%F From _Philippe Deléham_, Nov 21 2008: (Start)

%F a(n) = 26*a(n-1) + a(n-2) for n > 1, a(0)=13, a(1)=339.

%F G.f.: (13+x)/(1-26*x-x^2). (End)

%t Numerator[Convergents[Sqrt[170], 30]] (* _Vincenzo Librandi_, Nov 01 2013 *)

%Y Cf. A041313.

%K nonn,cofr,frac,easy

%O 0,1

%A _N. J. A. Sloane_

%E More terms from _Colin Barker_, Nov 06 2013