Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #18 Mar 28 2020 15:42:48
%S 12,13,155,168,4187,4355,52092,56447,1406820,1463267,17502757,
%T 18966024,472687333,491653357,5880874260,6372527617,158821537068,
%U 165194064685,1975956248603,2141150313288,53363563767515,55504714080803,663915418656348,719420132737151
%N Numerators of continued fraction convergents to sqrt(167).
%H Vincenzo Librandi, <a href="/A041308/b041308.txt">Table of n, a(n) for n = 0..200</a>
%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 336, 0, 0, 0, -1).
%F G.f.: -(x^7-12*x^6+13*x^5-155*x^4-168*x^3-155*x^2-13*x-12)/(x^8-336*x^4+1). - _Colin Barker_, Nov 06 2013
%t Numerator[Convergents[Sqrt[167], 30]] (* _Vincenzo Librandi_, Nov 01 2013 *)
%t LinearRecurrence[{0,0,0,336,0,0,0,-1},{12,13,155,168,4187,4355,52092,56447},30] (* _Harvey P. Dale_, Mar 28 2020 *)
%Y Cf. A041309, A010215 (continued fraction).
%K nonn,frac,cofr,easy
%O 0,1
%A _N. J. A. Sloane_.
%E More terms from _Colin Barker_, Nov 06 2013