login
A041303
Denominators of continued fraction convergents to sqrt(164).
2
1, 1, 5, 31, 129, 160, 3969, 4129, 20485, 127039, 528641, 655680, 16264961, 16920641, 83947525, 520605791, 2166370689, 2686976480, 66653806209, 69340782689, 344016936965, 2133442404479, 8877786554881, 11011228959360, 273147281579521, 284158510538881
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,4098,0,0,0,0,0,-1).
FORMULA
G.f.: -(x^10-x^9+5*x^8-31*x^7+129*x^6-160*x^5-129*x^4-31*x^3-5*x^2-x-1) / ((x^6-64*x^3-1)*(x^6+64*x^3-1)). - Colin Barker, Nov 15 2013
a(n) = 4098*a(n-6) - a(n-12). - Vincenzo Librandi, Dec 15 2013
MATHEMATICA
Denominator[Convergents[Sqrt[164], 30]] (* Vincenzo Librandi, Dec 15 2013 *)
LinearRecurrence[{0, 0, 0, 0, 0, 4098, 0, 0, 0, 0, 0, -1}, {1, 1, 5, 31, 129, 160, 3969, 4129, 20485, 127039, 528641, 655680}, 30] (* Harvey P. Dale, Nov 25 2015 *)
PROG
(Magma) I:=[1, 1, 5, 31, 129, 160, 3969, 4129, 20485, 127039, 528641, 655680]; [n le 12 select I[n] else 4098*Self(n-6)-Self(n-12): n in [1..40]]; // Vincenzo Librandi, Dec 15 2013
CROSSREFS
Sequence in context: A152122 A260045 A267938 * A184446 A077719 A235462
KEYWORD
nonn,frac,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Nov 15 2013
STATUS
approved