login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A041281 Denominators of continued fraction convergents to sqrt(153). 2

%I

%S 1,2,3,8,19,46,65,176,4289,8754,13043,34840,82723,200286,283009,

%T 766304,18674305,38114914,56789219,151693352,360175923,872045198,

%U 1232221121,3336487440,81307919681,165952326802,247260246483,660472819768,1568205886019,3796884591806

%N Denominators of continued fraction convergents to sqrt(153).

%H Vincenzo Librandi, <a href="/A041281/b041281.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,4354,0,0,0,0,0,0,0,-1).

%F G.f.: -(x^2-2*x-1)*(x^4+4*x^2+1)*(x^8+22*x^4+1) / ((x^4-8*x^2-1)*(x^4+8*x^2-1)*(x^8+66*x^4+1)). - _Colin Barker_, Nov 14 2013

%F a(n) = 4354*a(n-8) - a(n-16). - _Vincenzo Librandi_, Dec 14 2013

%t Denominator[Convergents[Sqrt[153], 30]] (* _Harvey P. Dale_, Mar 04 2013 *)

%t CoefficientList[Series[-(x^2 - 2 x - 1) (x^4 + 4 x^2 + 1) (x^8 + 22 x^4 + 1)/((x^4 - 8 x^2 - 1) (x^4 + 8 x^2 - 1) (x^8 + 66 x^4 + 1)), {x, 0, 30}], x] (* _Vincenzo Librandi_, Dec 14 2013 *)

%o (MAGMA) I:=[1,2,3,8,19,46,65,176,4289,8754,13043,34840, 82723,200286,283009,766304]; [n le 16 select I[n] else 4354*Self(n-8)-Self(n-16): n in [1..40]]; // _Vincenzo Librandi_, Dec 14 2013

%Y Cf. A041280, A010204.

%K nonn,frac,easy

%O 0,2

%A _N. J. A. Sloane_.

%E More terms from _Colin Barker_, Nov 14 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 1 03:36 EDT 2020. Contains 337441 sequences. (Running on oeis4.)