This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A041113 Denominators of continued fraction convergents to sqrt(65). 9
 1, 16, 257, 4128, 66305, 1065008, 17106433, 274767936, 4413393409, 70889062480, 1138638393089, 18289103351904, 293764292023553, 4718517775728752, 75790048703683585, 1217359297034666112, 19553538801258341377, 314073980117168128144, 5044737220675948391681 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Sqrt(65) = 16/2 + 16/257 + 16/(257*66305) + 16/(66305*17106433) + ... - Gary W. Adamson, Jun 13 2008 For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 16's along the main diagonal, and 1's along the superdiagonal and the subdiagonal. [John M. Campbell, Jul 08 2011] a(n) equals the number of words of length n on alphabet {0,1,...,16} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015 LINKS Nathaniel Johnston, Table of n, a(n) for n = 0..500 Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (16,1). FORMULA a(n) = F(n, 16), the n-th Fibonacci polynomial evaluated at x=16. - T. D. Noe, Jan 19 2006 a(n) = 16*a(n-1)+a(n-2) for n>1, a(0)=1, a(1)=16. G.f.: 1/(1-16*x-x^2). [Philippe Deléham, Nov 21 2008] a(n) = ((8+sqrt(65))^(n+1)-(8-sqrt(65))^(n+1))/(2*sqrt(65)). [Rolf Pleisch, May 14 2011] MATHEMATICA a=0; lst={}; s=0; Do[a=s-(a-1); AppendTo[lst, a]; s+=a*16, {n, 3*4!}]; lst (* Vladimir Joseph Stephan Orlovsky, Oct 27 2009 *) Denominator[Convergents[Sqrt[65], 30]] (* Vincenzo Librandi, Dec 11 2013 *) PROG (MAGMA) I:=[1, 16]; [n le 2 select I[n] else 16*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 11 2013 CROSSREFS Cf. A041112, A040056, A020822. Sequence in context: A223433 A223593 A067223 * A041482 A320362 A220742 Adjacent sequences:  A041110 A041111 A041112 * A041114 A041115 A041116 KEYWORD nonn,cofr,frac,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 12:18 EDT 2019. Contains 328160 sequences. (Running on oeis4.)