login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A040992 Primes p such that x^6 = 2 has a solution mod p. 11
2, 17, 23, 31, 41, 47, 71, 89, 113, 127, 137, 167, 191, 223, 233, 239, 257, 263, 281, 311, 353, 359, 383, 401, 431, 433, 439, 449, 457, 479, 503, 521, 569, 593, 599, 601, 617, 641, 647, 719, 727, 743, 761, 809, 839, 857, 863, 881, 887, 911, 919, 929, 953 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Complement of A040993 relative to A000040. - Vincenzo Librandi, Sep 13 2012

LINKS

T. D. Noe, Table of n, a(n) for n=1..1000

Index entries for related sequences

MATHEMATICA

ok[p_]:= Reduce[Mod[x^6- 2, p] == 0, x, Integers]=!=False; Select[Prime[Range[200]], ok] (* Vincenzo Librandi, Sep 13 2012 *)

PROG

(PARI) forprime(p=2, 2000, if([]~!=polrootsmod(x^6-2, p), print1(p, ", "))); print();

/* Joerg Arndt, Jul 27 2011 */

(MAGMA) [p: p in PrimesUpTo(1000) | exists(t){x : x in ResidueClassRing(p) | x^6 eq 2}]; // Vincenzo Librandi, Sep 13 2012

CROSSREFS

Cf. A000040, A040993.

For primes p such that x^m == 2 mod p has a solution for m = 2,3,4,5,6,7,... see A038873, A040028, A040098, A040159, A040992, A042966, ...

Sequence in context: A006029 A126961 A106622 * A049550 A049574 A018643

Adjacent sequences:  A040989 A040990 A040991 * A040993 A040994 A040995

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 8 18:55 EST 2016. Contains 278948 sequences.