%I #27 Jan 17 2024 01:38:39
%S 30,1,29,1,60,1,29,1,60,1,29,1,60,1,29,1,60,1,29,1,60,1,29,1,60,1,29,
%T 1,60,1,29,1,60,1,29,1,60,1,29,1,60,1,29,1,60,1,29,1,60,1,29,1,60,1,
%U 29,1,60,1,29,1,60,1,29,1,60,1,29,1,60,1,29,1,60,1,29
%N Continued fraction for sqrt(959).
%H <a href="/index/Con#confC">Index entries for continued fractions for constants</a>.
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,1).
%F a(n) = a(n-4) for n >= 5. - _Wesley Ivan Hurt_, Sep 03 2022
%F From _Amiram Eldar_, Jan 17 2024: (Start)
%F Multiplicative with a(2) = 29, a(2^e) = 60 for e >= 2, and a(p^e) = 1 for an odd prime p.
%F Dirichlet g.f.: zeta(s) * (1 + 7/2^(s-2) + 31/2^(2*s)). (End)
%p with(numtheory): Digits := 300: convert(evalf(sqrt(959)),confrac);
%t ContinuedFraction[Sqrt[959],80] (* or *) PadRight[{30},80,{60,1,29,1}] (* _Harvey P. Dale_, May 03 2013 *)
%K nonn,cofr,mult,easy
%O 0,1
%A _N. J. A. Sloane_