|
|
A040141
|
|
Primes p such that x^4 = 18 has a solution mod p.
|
|
2
|
|
|
2, 3, 7, 17, 23, 31, 41, 47, 71, 73, 79, 103, 127, 137, 151, 167, 191, 199, 223, 239, 263, 271, 311, 337, 359, 367, 383, 401, 431, 439, 449, 463, 479, 487, 503, 521, 569, 577, 599, 601, 607, 631, 641, 647, 719
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
|
|
MATHEMATICA
|
ok [p_]:=Reduce[Mod[x^4 - 18, p]== 0, x, Integers]=!= False; Select[Prime[Range[180]], ok] (* Vincenzo Librandi, Sep 12 2012 *)
|
|
PROG
|
(MAGMA) [p: p in PrimesUpTo(800) | exists(t){x : x in ResidueClassRing(p) | x^4 eq 18}]; // Vincenzo Librandi, Sep 12 2012
|
|
CROSSREFS
|
Cf. A040154.
Sequence in context: A171430 A045332 A045333 * A235627 A019335 A113425
Adjacent sequences: A040138 A040139 A040140 * A040142 A040143 A040144
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane.
|
|
STATUS
|
approved
|
|
|
|