login
Continued fraction for sqrt(101).
4

%I #30 Feb 12 2024 20:23:11

%S 10,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,

%T 20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,

%U 20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20

%N Continued fraction for sqrt(101).

%H <a href="/index/Con#confC">Index entries for continued fractions for constants</a>

%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (1).

%F From _Elmo R. Oliveira_, Feb 11 2024: (Start)

%F a(n) = 20 for n >= 1.

%F G.f.: 10*(1+x)/(1-x).

%F E.g.f.: 20*exp(x) - 10.

%F a(n) = 10*A040000(n) = 5*A040002(n) = 2*A040020(n). (End)

%e 10 + 1/(20 + 1/(20 + 1/(20 + 1/(20 + ...)))) = sqrt(101).

%p Digits := 200: convert(evalf(sqrt(101)),confrac,150,'cvgts'):

%t ContinuedFraction[Sqrt[101],300] (* _Vladimir Joseph Stephan Orlovsky_, Mar 10 2011*)

%t PadRight[{10},100,{20}] (* _Harvey P. Dale_, Apr 22 2022 *)

%Y Cf. A248803 (decimal expansion), A041180/A041181 (convergents).

%Y Cf. A040000, A040002, A040020.

%K nonn,cofr,easy

%O 0,1

%A _N. J. A. Sloane_