login
A040069
Primes p such that x^3 = 15 has a solution mod p.
3
2, 3, 5, 7, 11, 17, 23, 29, 31, 41, 47, 53, 59, 67, 71, 79, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 223, 227, 229, 233, 239, 251, 257, 263, 269, 277, 281, 283, 293, 311, 317, 331, 347, 353
OFFSET
1,1
COMMENTS
Complement of A040070 relative to A000040. - Vincenzo Librandi, Sep 13 2012
LINKS
MATHEMATICA
ok [p_]:=Reduce[Mod[x^3 - 15, p] == 0, x, Integers] =!= False; Select[Prime[Range[180]], ok] (* Vincenzo Librandi, Sep 11 2012 *)
PROG
(Magma) [p: p in PrimesUpTo(450) | exists(t){x : x in ResidueClassRing(p) | x^3 eq 15}]; // Vincenzo Librandi, Sep 11 2012
(PARI) select(n->ispower(Mod(15, n), 3), primes(500)) \\ Charles R Greathouse IV, Sep 11 2012
CROSSREFS
Sequence in context: A094342 A164641 A058982 * A057751 A040046 A075551
KEYWORD
nonn,easy
AUTHOR
STATUS
approved