login
A039973
An example of a d-perfect sequence: a(2*n) = 0, a(2*n-1) = A039965(n).
1
1, 0, 2, 0, 2, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,3
LINKS
D. Kohel, S. Ling and C. Xing, Explicit Sequence Expansions, in Sequences and their Applications, C. Ding, T. Helleseth, and H. Niederreiter, eds., Proceedings of SETA'98 (Singapore, 1998), 308-317, 1999. DOI: 10.1007/978-1-4471-0551-0_23
FORMULA
a(2*n) = 0, a(2*n-1) = A039965(n). - Christian G. Bower, Jun 12 2005
PROG
(PARI)
C(n) = binomial(2*n, n)/(n+1);
A039965(n) = (((-1)^(n+1)*C(n-1)) % 3); \\ From A039965
A039973(n) = if(n%2, A039965((n+1)/2), 0); \\ Antti Karttunen, Feb 13 2019
CROSSREFS
Cf. A039965.
Sequence in context: A164734 A090193 A039974 * A035171 A352567 A088700
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Christian G. Bower, Jun 12 2005
Bower's formula added to the name by Antti Karttunen, Feb 13 2019
STATUS
approved