This site is supported by donations to The OEIS Foundation.

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A039944 Undulating palindromic primes of form ABABAB...BA with alternating prime and nonprime digits. 3
 2, 3, 5, 7, 131, 151, 313, 383, 787, 797, 929, 74747, 78787, 95959, 1212121, 383838383, 929292929, 979797979, 12121212121, 151515151515151, 383838383838383, 38383838383838383, 74747474747474747, 95959595959595959, 383838383838383838383, 787878787878787878787 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS There are 52 terms of integer length 999 or less. The first term with integer length greater than 999 has 1295 digits and is 9595...5959. - Harvey P. Dale, Jul 12 2018 REFERENCES C. A. Pickover, "Wonders of Numbers", Oxford New York 2001, Chapter 52, pp. 123-124, 316-317. LINKS Harvey P. Dale, Table of n, a(n) for n = 1..52 C. A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," Zentralblatt review MATHEMATICA f[x_]:=Module[{pr, cm}, pr=Select[Flatten[Table[FromDigits[PadRight[{}, x, {a, b}]], {a, {3, 7}}, {b, {1, 4, 6, 8, 9}}]], PrimeQ]; cm=Select[ Flatten[ Table[ FromDigits[PadRight[{}, x, {a, b}]], {a, {1, 9}}, {b, {2, 3, 5, 7}}]], PrimeQ]; Sort[ Join[pr, cm]]]; Join[{2, 3, 5, 7}, Flatten[ Table[ f[x], {x, 3, 999, 2}]]//Union (* Harvey P. Dale, Jul 12 2018 *) CROSSREFS Sequence in context: A090718 A167853 A117703 * A076611 A082805 A071119 Adjacent sequences:  A039941 A039942 A039943 * A039945 A039946 A039947 KEYWORD base,nonn AUTHOR EXTENSIONS More terms from Harvey P. Dale, Jul 12 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 16:53 EDT 2018. Contains 315347 sequences. (Running on oeis4.)