login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A039919 Related to enumeration of edge-rooted catafusenes. 5
0, 1, 5, 21, 86, 355, 1488, 6335, 27352, 119547, 528045, 2353791, 10575810, 47849685, 217824285, 996999525, 4585548680, 21182609875, 98236853415, 457211008415, 2134851575050, 9997848660345, 46949087361550, 221022160284101, 1042916456739696, 4931673470809525, 23367060132453323 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Binomial transform of the first differences of the Catalan numbers (see A000245). - Paul Barry, Feb 16 2006

Starting (1, 5, 21, ...) = A002212, (1, 3, 10, 36, 137, ...) convolved with A007317, (1, 2, 5, 15, 51, ...). - Gary W. Adamson, May 19 2009

From Petros Hadjicostas, Jan 15 2019: (Start)

In Cyvin et al. (1992), sequence (N(m): m >= 1) = (A002212(m): m >= 1) is defined by eq. (1), p. 533. (We may let N(0) := A002212(0) = 1.)

In the same reference, sequence (M(m): m >= 1) is defined by eq. (13), p. 534. We have M(2*m) = M(2*m-1) =  A007317(m) for m >= 1.

In the same reference, the sequence (M'(m): m >= 3) is defined by eq. (26), p. 535; see also Cyvin et al. (1994, Monatshefte fur Chemie), eq. 5, p. 1329. We have M'(m) = Sum_{1 <= i <= floor((m-1)/2)} N(i)*M(m-2*i) for m >= 3.

It turns out that M'(m) = a(floor((m + 1)/2)) for m >= 3, where (a(n): n >= 1) is the current sequence.

If 1 + U(x) = Sum_{n >= 0} N(n)*x^n = Sum_{n >= 0} A002212(n)*x^n, then the g.f. of the sequence (M(m): m >= 1) is V(x) = x*(1-x)^(-1)*(1 + U(x^2)). See eqs. 3 and 4, p. 1329, in Cyvin et al. (1994, Monatshefte fur Chemie).

Eq. 6 in the latter reference (pp. 1329-1330) states that the g.f. of the sequence (M'(m): m >= 3) is U(x^2)*V(x) = U(x^2)*x*(1-x)^(-1)*(1 + U(x^2)).

Since M'(m) = a(floor((m + 1)/2)) for m >= 3, the latter g.f. also equals (1 + x)*A(x^2)/x, where A(x) = Sum_{n >= 1} a(n)*x^n is the g.f. of the current sequence (given below by Emeric Deutsch).

Equating the two forms of the g.f. of the (M'(m): m >= 3), we get that A(x) = x*U(x)*(1 + U(x))/(1-x), where 1 + U(x) is the g.f. of A002212 (with U(0) = 0).

The sequence (M'(m): m >= 3) = (a(floor((m + 1)/2)): m >= 3) is used in the calculation of A026298 (= numbers of polyhexes of the class PF2 with three catafusenes annelated to pyrene).

(End)

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..200

B. N. Cyvin, E. Brendsdal, J. Brunvoll, and S. J. Cyvin, A class of polygonal systems representing polycyclic conjugated hydrocarbons: Catacondensed monoheptafusenes, Monat. f. Chemie, 125 (1994), 1327-1337 (see Eq. 6 for the g.f. of the sequence (M'(n): n >= 3) = (a(floor((m + 1)/2)): m >= 3)).

S. J. Cyvin, Zhang Fuji, B. N. Cyvin, Guo Xiaofeng, and J. Brunvoll, Enumeration and classification of benzenoid systems. 32. Normal perifusenes with two internal vertices, J. Chem. Inform. Comput. Sci., 32 (1992), 532-540.

S. J. Cyvin, B. N. Cyvin, J. Brunvoll, and E. Brendsdal, Enumeration and Classification of Certain Polygonal Systems Representing Polycyclic Conjugated Hydrocarbons: Annelated Catafusenes, J. Chem. Inform. Comput. Sci., 34 (1994), 1174-1180.

FORMULA

G.f.: 8*x^2*(1-x)/(1 - x + sqrt(1 - 6*x + 5*x^2))^3. - Emeric Deutsch, Oct 24 2002

a(n) = A002212(n) - Sum_{j=0..n-1} A002212(j). Example: a(5) = 137 - (1 + 1 + 3 + 10 + 36) = 86. - Emeric Deutsch, Jan 23 2004

a(n+1) = Sum_{k=0..n} C(n,k)*(C(k+1) - C(k)) for n >= 0, where C(k) = A000108(k). - Paul Barry, Feb 16 2006 [edited by Petros Hadjicostas, Jan 18 2019]

Recurrence: (n-2)*(n+1)*a(n) = 2*(n-1)*(3*n-4)*a(n-1) - 5*(n-2)*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 08 2012

a(n) ~ 3*5^(n+1/2)/(8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 08 2012

G.f.: x*U(x)*(1 + U(x))/(1-x), where 1 + U(x) is the g.f. of A002212 (using the notation in the two papers by Cyvin et al. published in 1994).

MATHEMATICA

Table[SeriesCoefficient[8x^2*(1-x)/(1-x+Sqrt[1-6x+5x^2])^3, {x, 0, n}], {n, 1, 23}] (* Vaclav Kotesovec, Oct 08 2012 *)

PROG

(PARI) x='x+O('x^66); concat([0], Vec(8*x^2*(1-x)/(1-x+sqrt(1-6*x+5*x^2))^3)) \\ Joerg Arndt, May 04 2013

CROSSREFS

Cf. A002212, A026298.

Cf. A007317. - Gary W. Adamson, May 19 2009

Sequence in context: A097113 A265939 A012814 * A322875 A292494 A010925

Adjacent sequences:  A039916 A039917 A039918 * A039920 A039921 A039922

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Emeric Deutsch, Oct 24 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 20 07:48 EDT 2019. Contains 326143 sequences. (Running on oeis4.)