login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A039917 Number of orderings of 1,2,...,n^2 in an n X n matrix such that each row, each column and both diagonals are increasing. 2
1, 1, 9, 2017, 21569213, 17835527619513, 1677123511579177202174, 24742950249259362969953039657613, 75512002909758683196631913316950684079768626, 60752021865167494642984305761115275381534124800396484901989, 15991585283632910454908797943467512732011897255095362833558749286619895509557 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..14

Index entries for sequences related to Young tableaux.

EXAMPLE

From Alois P. Heinz, Jul 23 2012: (Start)

a(2) = 1:  [1, 3]

           [2, 4].

a(3) = 9:

[1, 4, 7]  [1, 3, 7]  [1, 2, 7]  [1, 4, 6]  [1, 3, 6]

[2, 5, 8]  [2, 5, 8]  [3, 5, 8]  [2, 5, 8]  [2, 5, 8]

[3, 6, 9]  [4, 6, 9]  [4, 6, 9]  [3, 7, 9]  [4, 7, 9]

.

[1, 2, 6]  [1, 4, 6]  [1, 3, 6]  [1, 2, 6]

[3, 5, 8]  [2, 5, 7]  [2, 5, 7]  [3, 5, 7]

[4, 7, 9]  [3, 8, 9]  [4, 8, 9]  [4, 8, 9]. (End)

MAPLE

b:= proc(l) option remember; local n; n:= nops(l); `if`({l[]}={0},

      1, add(`if`((l[i]-1<>n-i or i=1 or l[i-1]-1<=n-i) and l[i]>

      `if`(i=n, 0, l[i+1]), b(subsop(i=l[i]-1, l)), 0), i=1..n))

    end:

a:= n-> b([n$n]):

seq(a(n), n=1..8);  # Alois P. Heinz, Jul 23 2012

CROSSREFS

Cf. A039622, A181191.

Sequence in context: A218692 A024125 A232684 * A162140 A006945 A089825

Adjacent sequences:  A039914 A039915 A039916 * A039918 A039919 A039920

KEYWORD

nonn

AUTHOR

Floor van Lamoen

EXTENSIONS

One more term from Jud McCranie, Aug 09 2001

a(6)-a(13) from Alois P. Heinz, Jul 23 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 29 08:58 EDT 2017. Contains 284268 sequences.