login
Number of partitions satisfying cn(0,5) + cn(1,5) + cn(4,5) <= cn(2,5) and cn(0,5) + cn(1,5) + cn(4,5) <= cn(3,5).
0

%I #6 Mar 30 2012 17:20:57

%S 0,1,1,1,1,3,2,4,5,6,9,11,12,19,22,30,34,44,54,69,86,103,123,157,187,

%T 232,276,331,399,490,579,698,820,983,1179,1398,1646,1944,2288,2730,

%U 3190,3758,4374,5136,6043

%N Number of partitions satisfying cn(0,5) + cn(1,5) + cn(4,5) <= cn(2,5) and cn(0,5) + cn(1,5) + cn(4,5) <= cn(3,5).

%C For a given partition cn(i,n) means the number of its parts equal to i modulo n.

%C Short: 0 + 1 + 4 <= 2 and 0 + 1 + 4 <= 3 (ZAApBB).

%K nonn

%O 1,6

%A _Olivier GĂ©rard_