login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A039902 Number of partitions satisfying 0 < cn(1,5) + cn(4,5) + cn(2,5) and 0 < cn(1,5) + cn(4,5) + cn(3,5). 1
0, 1, 1, 2, 4, 6, 9, 13, 19, 27, 39, 52, 71, 95, 127, 170, 220, 286, 371, 474, 614, 770, 979, 1229, 1541, 1934, 2392, 2968, 3668, 4504, 5556, 6764, 8271, 10055, 12199, 14798, 17836, 21504, 25860, 30996, 37185, 44348, 52943, 63003, 74856, 88874, 105165, 124376 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

For a given partition cn(i,n) means the number of its parts equal to i modulo n.

Short: o < 1 + 4 + 2 and o < 1 + 4 + 3 (OMBBAAp).

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

MAPLE

b:= proc(n, i, t, s) option remember; `if`(n=0, t*s,

      `if`(i<1, 0, b(n, i-1, t, s)+ `if`(i>n, 0,

       b(n-i, i, `if`(irem(i, 5) in {0, 3}, t, 1),

      `if`(irem(i, 5) in {0, 2}, s, 1)))))

    end:

a:= n-> b(n$2, 0$2):

seq(a(n), n=0..50);  # Alois P. Heinz, Apr 04 2014

MATHEMATICA

b[n_, i_, t_, s_] := b[n, i, t, s] = If[n == 0, t*s, If[i<1, 0, b[n, i-1, t, s] + If[i>n, 0, b[n-i, i, If[MemberQ[{0, 3}, Mod[i, 5] ], t, 1], If[MemberQ[{0, 2}, Mod[i, 5]], s, 1]]]]]; a[n_] := b[n, n, 0, 0]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Nov 12 2015, after Alois P. Heinz *)

CROSSREFS

Sequence in context: A164315 A171861 A039900 * A081659 A143586 A241546

Adjacent sequences:  A039899 A039900 A039901 * A039903 A039904 A039905

KEYWORD

nonn

AUTHOR

Olivier Gérard

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 10 00:00 EDT 2020. Contains 335570 sequences. (Running on oeis4.)