login
Number of partitions satisfying cn(0,5) + cn(2,5) <= 1 and cn(0,5) + cn(3,5) <= 1.
0

%I #6 Mar 30 2012 17:20:56

%S 1,2,3,4,6,8,10,13,17,22,28,34,41,52,64,78,92,110,133,160,190,222,260,

%T 308,362,423,489,566,658,764,880,1009,1156,1328,1523,1739,1976,2247,

%U 2556,2905,3289,3715,4192,4734,5339

%N Number of partitions satisfying cn(0,5) + cn(2,5) <= 1 and cn(0,5) + cn(3,5) <= 1.

%C For a given partition cn(i,n) means the number of its parts equal to i modulo n.

%C Short: 0 + 2 <= u and 0 + 3 <= u (ZBBU).

%K nonn

%O 1,2

%A _Olivier GĂ©rard_