login
Number of partitions satisfying cn(0,5) < cn(1,5) + cn(4,5) + cn(2,5) + cn(3,5).
0

%I #6 Mar 30 2012 17:20:56

%S 1,2,3,5,6,10,14,21,29,40,53,73,97,130,171,223,287,373,476,612,771,

%T 976,1224,1537,1918,2384,2948,3643,4476,5503,6720,8203,9970,12105,

%U 14649,17699,21313,25632,30738,36820,43981,52472,62445,74225,88037

%N Number of partitions satisfying cn(0,5) < cn(1,5) + cn(4,5) + cn(2,5) + cn(3,5).

%C For a given partition cn(i,n) means the number of its parts equal to i modulo n.

%C Short: 0 < 1 + 4 + 2 + 3 (ZMAApBBp).

%K nonn

%O 1,2

%A _Olivier GĂ©rard_