login
Indices of triangular numbers which are also heptagonal.
3

%I #19 Aug 16 2015 12:03:55

%S 1,10,493,3382,158905,1089154,51167077,350704366,16475640049,

%T 112925716858,5305104928861,36361730124070,1708227311453353,

%U 11708364174233842,550043889183050965,3770056902373173214,177112424089630957537,1213946614199987541226

%N Indices of triangular numbers which are also heptagonal.

%C From _Ant King_, Oct 19 2011: (Start)

%C lim(n->Infinity,a(2n+1)/a(2n))=1/2(47+21*sqrt(5)).

%C lim(n->Infinity,a(2n)/a(2n-1))=1/2(7+3*sqrt(5)).

%C (End)

%H Colin Barker, <a href="/A039835/b039835.txt">Table of n, a(n) for n = 1..798</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HeptagonalTriangularNumber.html">Heptagonal Triangular Number</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,322,-322,-1,1).

%F G.f.: (-2x^4-9x^3+161x^2+9x+1)/[(1-x)(1-18x+x^2)(1+18x+x^2)].

%F a(n+2) = 322*a(n+1)-a(n)+160 a(n+1) = 161*a(n)+80+36*(20*a(n)^2+20*a(n)+9)^0.5 - _Richard Choulet_, Sep 29 2007

%F From _Ant King_, Oct 19 2011: (Start)

%F a(n) = a(n-1)+322a(n-2)-322a(n-3)-a(n-4)+a(n-5).

%F a(n) = 1/20*sqrt(5)*(( sqrt(5)-(-1)^n)*(2+ sqrt(5))^(2n-1)+( sqrt(5)+(-1)^n)*(2- sqrt(5))^(2n-1)-2* sqrt(5)).

%F a(n) = floor(1/20* sqrt(5)*(sqrt(5)-(-1)^n)*(2+ sqrt(5))^(2n-1))(End)

%t LinearRecurrence[{1,322,-322,-1,1},{1,10,493,3382,158905},16] (* _Ant King_, Oct 19 2011 *)

%o (PARI) Vec((-2*x^4-9*x^3+161*x^2+9*x+1)/((1-x)*(1-18*x+x^2)*(1+18*x+x^2))+O(x^99))

%Y Cf. A046193, A046194.

%K nonn,easy

%O 1,2

%A _Eric W. Weisstein_