login
A039813
Matrix 5th power of Stirling2 triangle A008277.
9
1, 5, 1, 35, 15, 1, 315, 215, 30, 1, 3455, 3325, 725, 50, 1, 44590, 56605, 17100, 1825, 75, 1, 660665, 1060780, 415555, 60900, 3850, 105, 1, 11035095, 21772595, 10606470, 1998605, 172550, 7210, 140, 1, 204904830, 486459105, 286281665, 66528210, 7346955, 417690, 12390, 180, 1
OFFSET
1,2
LINKS
FORMULA
E.g.f. k-th column: (( exp(exp(exp(exp(exp(x)-1)-1)-1)-1)-1 )^k)/k!. [corrected by Seiichi Manyama, Feb 12 2022]
EXAMPLE
Triangle begins:
1;
5, 1;
35, 15, 1;
315, 215, 30, 1;
3455, 3325, 725, 50, 1;
44590, 56605, 17100, 1825, 75, 1;
...
MATHEMATICA
max = 9; m = MatrixPower[Array[StirlingS2, {max, max}], 5]; Table[Take[m[[n]], n], {n, 1, max}] // Flatten (* Jean-François Alcover, Mar 03 2014 *)
CROSSREFS
Cf. A008277, A000357 (first column).
Sequence in context: A336599 A066833 A334887 * A160632 A089515 A158820
KEYWORD
nonn,tabl
AUTHOR
Christian G. Bower, Feb 15 1999
STATUS
approved