login
A039764
D-analogs of Bell numbers.
0
1, 1, 4, 15, 72, 403, 2546, 17867, 137528, 1149079, 10335766, 99425087, 1017259964, 11018905667, 125860969266, 1510764243699, 18999827156304, 249687992188015, 3420706820299374, 48751337014396167
OFFSET
0,3
LINKS
R. Suter, Two analogues of a classical sequence, J. Integer Sequences, Vol. 3 (2000), #P00.1.8.
FORMULA
E.g.f.: (exp(x) - x)*exp(1/2*(exp(2*x) - 1)).
a(n) = Sum_{k=0..n} A039760(n, k).
MATHEMATICA
Range[0, 25]! CoefficientList[Series[(Exp[x] - x) Exp[1/2 (Exp[2 x] - 1)], {x, 0, 25}], x] (* Vincenzo Librandi, May 03 2015 *)
PROG
(PARI) x='x+O('x^30); Vec(serlaplace((exp(x) - x)*exp(1/2*(exp(2*x) - 1)))) \\ Michel Marcus, May 03 2015
CROSSREFS
B-analogs of Bell numbers = A007405.
Sequence in context: A185133 A278640 A026992 * A171005 A303229 A340355
KEYWORD
nonn
AUTHOR
Ruedi Suter (suter(AT)math.ethz.ch)
STATUS
approved