login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A039744 Number of ways n(n-1) can be partitioned into the sum of 2(n-1) integers in the range 0..n. 4
1, 1, 2, 5, 18, 73, 338, 1656, 8512, 45207, 246448, 1371535, 7764392, 44585180, 259140928, 1521967986, 9020077206, 53885028921, 324176252022, 1962530559999, 11947926290396, 73108804084505, 449408984811980, 2774152288318052, 17190155366056138, 106894140685782646 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

An upper bound on A007878.

The indices of the odd terms appear to be A118113. - T. D. Noe, Dec 19 2006

LINKS

T. D. Noe and Alois P. Heinz, Table of n, a(n) for n = 0..150 (terms n=1..65 from T. D. Noe)

FORMULA

a(n)=T(n(n+1),2n-2,n), where T(k,p,m) is a recursive function that gives the number of partitions of k into p parts of 0..m. It is defined T(k,p,m) = sum_{i=1..m} T(k-i,p-1,i), with the boundary conditions T(0,p,m)=1 and T(k,0,m)=0 for all positive k, p and m. - T. D. Noe, Dec 19 2006

MAPLE

b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(t*i

      <n, 0, b(n, i-1, t)+`if`(i>n, 0, b(n-i, i, t-1))))

    end:

a:= n-> b(n*(n-1), n, 2*(n-1)):

seq(a(n), n=0..25);  # Alois P. Heinz, May 15 2016

MATHEMATICA

T[0, p_, m_]=1; T[k_, 0, m_]=0; T[k_, p_, m_]:=T[k, p, m]=Sum[T[k+i, p-1, -i], {i, -m, -1}]; Table[T[n(n-1), 2n-2, n], {n, 40}] - T. D. Noe, Dec 19 2006

CROSSREFS

Sequence in context: A045612 A103940 A162543 * A319121 A289655 A189281

Adjacent sequences:  A039741 A039742 A039743 * A039745 A039746 A039747

KEYWORD

nonn

AUTHOR

Bill Daly (bill.daly(AT)tradition.co.uk)

EXTENSIONS

Definition corrected by Jozsef Pelikan (pelikan(AT)cs.elte.hu), Dec 05 2006

More terms from T. D. Noe, Dec 19 2006

a(0)=1 prepended by Alois P. Heinz, May 15 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 19 16:06 EST 2019. Contains 329320 sequences. (Running on oeis4.)