%I #19 Feb 23 2022 21:41:03
%S 1,2,5,19,151
%N Two-dimensional simplicial complexes on n unlabeled nodes.
%C A simplicial complex is a space with a triangulation. Formally, a simplicial complex K in R^n is a collection of simplices of in R^n such that: (1) Every face of a simplex of K is in K, and (2) The intersection of any two simplices of K is a face of each of them (Munkres 1993, p. 7). - _Jonathan Vos Post_, Feb 03 2011
%D F. Harary and E. M. Palmer, Graphical enumeration, Academic Press, NY, 1973.
%D V. Jovovic, On the number of two-dimensional simplicial complexes (in Russian), Metody i sistemy tekhnicheskoy diagnostiki, Vypusk 16, Mezhvuzovskiy zbornik nauchnykh trudov, Izdatelstvo Saratovskogo universiteta, 1991, p. 83.
%D J. R. Munkres, Simplicial Complexes and Simplicial Maps, Section 1.2 in Elements of Algebraic Topology, New York: Perseus Books Pub., pp. 7-14, 1993.
%o (Magma)
%o _<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(x^5+2869); [1] cat BadPrimes(C); // _Artur Jasinski_, May 11 2010
%K nonn,nice,hard,more
%O 1,2
%A _Vladeta Jovovic_