|
|
A039655
|
|
Number of iterations of f(x) = sigma(x)-1 applied to n required to reach a prime, or -1 if no prime is ever reached.
|
|
14
|
|
|
0, 0, 2, 0, 1, 0, 2, 5, 1, 0, 4, 0, 1, 1, 2, 0, 2, 0, 1, 1, 2, 0, 1, 2, 1, 3, 2, 0, 1, 0, 5, 1, 1, 1, 2, 0, 1, 2, 1, 0, 4, 0, 1, 5, 1, 0, 2, 4, 2, 1, 1, 0, 3, 1, 3, 1, 1, 0, 1, 0, 4, 1, 2, 1, 2, 0, 3, 4, 2, 0, 2, 0, 1, 2, 1, 4, 1, 0, 2, 2, 3, 0, 1, 1, 1, 3, 1, 0, 1, 2, 1, 1, 2, 3, 1, 0, 3, 2, 2, 0, 2, 0, 2, 1, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,3
|
|
LINKS
|
Charles R Greathouse IV, Table of n, a(n) for n = 2..10000
MathOverflow, Does iterating a certain function related to the sums of divisors eventually always result in a prime value?, 2014
Hugo Pfoertner, Terms a(2)...a(1000000).
N. J. A. Sloane, Three (No, 8) Lovely Problems from the OEIS, Experimental Mathematics Seminar, Rutgers University, Oct 05 2017, Part I, Part 2, Slides. (Mentions this sequence)
|
|
MATHEMATICA
|
f[n_] := Plus @@ Divisors@n - 1; g[n_] := Length@ NestWhileList[ f@# &, n, !PrimeQ@# &] - 1; Table[ g@n, {n, 2, 106}] (* Robert G. Wilson v, May 07 2010 *)
|
|
PROG
|
(PARI) a(n)=my(t); while(!isprime(n), n=sigma(n)-1; t++); t \\ Charles R Greathouse IV, Sep 16 2014
|
|
CROSSREFS
|
Cf. A039654, A039649, A039650, A039651, A039652, A039653, A039655, A039656.
For records see A292114 and A292115.
Sequence in context: A321297 A163577 A132178 * A103775 A331594 A093057
Adjacent sequences: A039652 A039653 A039654 * A039656 A039657 A039658
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
David W. Wilson
|
|
EXTENSIONS
|
Escape clause added by N. J. A. Sloane, Aug 31 2017
|
|
STATUS
|
approved
|
|
|
|