# An identity for A039619 

## DAVID CALLAN

May 15, 2015

Proposition. For $n \geq 2$,

$$
(n-1)!\sum_{k=1}^{n-1}\binom{2 n-1-k}{n-1-k} \frac{1}{k}=\frac{(2 n-1)!}{n!}\left(H_{2 n-1}-H_{n}\right)
$$

Proof (bijective). For a list of positive integers, say an entry $a$ is left-full if $1,2, \ldots, a-1$ all occur in the list and before $a$. Thus, the left-full entries in 24173 are 1 and 3 . Clearly, if 1 occurs in the list it is always left-full, while if 1 does not occur then no entry is left-full.

Let $\mathcal{A}_{n}$ denote the set of lists of $n-1$ distinct elements of [ $2 n-1$ ] with one marked left-full entry (and possibly other left-full entries). For example, with a dot denoting the marked entry, $\mathcal{A}_{3}=\{\dot{1} 2,1 \dot{2}, \dot{1} 3, \dot{1} 4, \dot{1} 5,2 \dot{1}, 3 \dot{1}, 4 \dot{1}, 5 \dot{1}\}$.

To count $\mathcal{A}_{n}$ by the location $i(1 \leq i \leq n-1)$ of the marked left-full entry, let us construct its members entrywise left to right. With the falling factorial notation $n^{\underline{i}}:=n(n-1) \cdots(n-i+1)$, there are $(2 n-1)^{i-1}$ choices for the first $i-1$ entries since the only restriction is that they must be distinct, then just 1 choice for the $i$ th entry since it must be the smallest unused element of $[2 n-1]$, and then $(2 n-i-1)^{n-i}$ choices for the remaining entries. Thus

$$
\begin{aligned}
\left|\mathcal{A}_{n}\right| & =\sum_{i=1}^{n-1}(2 n-1)^{\frac{i-1}{}}(2 n-i-1)^{\frac{n-i}{}} \\
& =(2 n-1)^{\frac{n-1}{}} \sum_{i=1}^{n-1} \frac{1}{2 n-i} \\
& =\frac{(2 n-1)!}{n!}\left(\frac{1}{2 n-1}+\frac{1}{2 n-2}+\cdots+\frac{1}{n+1}\right) \\
& =\frac{(2 n-1)!}{n!}\left(H_{2 n-1}-H_{n}\right)
\end{aligned}
$$

Now let us count $\mathcal{A}_{n}$ by the value of the marked entry. To construct the members of $\mathcal{A}_{n}$ for which $k$ is the marked left-full entry, arrange $1,2, \ldots, k-1$ to the left of $k$ thus: $a_{1} a_{2} \ldots a_{k-1} k$, for $(k-1)$ ! choices, then choose $n-1-k$ elements from $[k+1,2 n-1]$ to form the remainder of the list- $\binom{2 n-1-k}{n-1-k}$ choices - and lastly, arrange these $n-1-k$ elements together with $k$ dots representing the already placed entries- $\frac{(n-1)!}{k!}$ choices.

Thus

$$
\begin{aligned}
\left|\mathcal{A}_{n}\right| & =\sum_{k=1}^{n-1}(k-1)!\binom{2 n-1-k}{n-1-k} \frac{(n-1)!}{k!} \\
& =(n-1)!\sum_{k=1}^{n-1}\binom{2 n-1-k}{n-1-k} \frac{1}{k}
\end{aligned}
$$

Department of Statistics, University of Wisconsin-Madison
1300 University Ave, Madison, WI 53706-1532
callan@stat.wisc.edu

