login
Conjecturally, number of minimum points of '3x+(2n+1)' problem.
7

%I #6 Dec 19 2015 12:54:18

%S 1,1,6,2,1,3,10,6,3,2,2,4,8,1,5,2,3,9,4,10,2,2,6,8,3,3,2,11,2,8,3,2,

%T 16,2,4,8,4,8,5,5,1,4,9,5,2,14,2,10,3,3,8,3,9,2,2,4,2,11,10,9,5,2,12,

%U 3,2,4,5,6,6,2,8,15,13,3,3,3,3,8,2,2,9,3,11,4,12,2,3,18,8,2,4,3,10,7

%N Conjecturally, number of minimum points of '3x+(2n+1)' problem.

%H D. Wasserman, <a href="http://home.earthlink.net/~dwasserm/EISfile">Listing of loops</a>

%e In '3x+1' problem (n->n/2 if even, n->3n+1 if odd) every n (conjecturally) reaches 1.

%e In '3x+3' problem, every n (conjecturally) reaches 3.

%e In '3x+5' problem, every n (conjecturally) reaches 1,5,19,23,187 or 347. (6 values)

%e In '3x+7' problem, every n (conjecturally) reaches 5 or 7. (2 values)

%Y Cf. A039509-A039515.

%K nonn

%O 0,3

%A _Christian G. Bower_, Feb 15 1999