This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A039300 Number of distinct quadratic residues mod 3^n. 4
 1, 2, 4, 11, 31, 92, 274, 821, 2461, 7382, 22144, 66431, 199291, 597872, 1793614, 5380841, 16142521, 48427562, 145282684, 435848051, 1307544151, 3922632452, 11767897354, 35303692061, 105911076181, 317733228542, 953199685624 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Number of distinct n-digit suffixes of base 3 squares. In general, for any odd prime p>=3, the number s of quadratic residues mod p^n is given by s=(p^(n+1) + p + 2)/2*(p+1) for even n and s=(p^(n+1) + 2*p + 1)/2*(p+1) for odd n. - Lekraj Beedassy, Jan 07 2005 REFERENCES W. D. Stangl, "Counting Squares in Z_n", Mathematics Magazine pp. 285-9 Vol. 69 No. Oct 04 1996. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index to sequences with linear recurrences with constant coefficients, signature (3,1,-3). FORMULA a(n) = floor((3^n+3)*3/8). a(n) = (3^(n+1) + 6 + (-1)^(n+1))/8- - Lekraj Beedassy, Jan 07 2005 G.f.: (1-x-3x^2)/((1-x)(1+x)(1-3x)). a(n) = 2*a(n-1)+3*a(n-2)-3 with n>1, a(0)=1, a(1)=1. [From Zerinvary Lajos (zerinvarylajos(AT)yahoo.com), Dec 14 2008] a(n) = 3*a(n-1)+ a(n-2) -3*a(n-3). Vincenzo Librandi, Apr 21 2012 MAPLE a[0]:=1:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]+3*a[n-2]-3 od: seq(a[n], n=1..29); # [From Zerinvary Lajos (zerinvarylajos(AT)yahoo.com), Dec 14 2008] MATHEMATICA CoefficientList[Series[(1-x-3x^2)/((1-x)(1+x)(1-3x)), {x, 0, 35}], x] (* Vincenzo Librandi, Apr 21 2012 *) Table[Floor((3^n+3)*3/8), {n, 0, 26}] (* Bruno Berselli, Apr 21 2012 *) PROG (PARI) a(n)=if(n<0, 0, 3^n*3\8+1) (PARI) a(n)=if(n<1, n==0, 3*a(n-1)-2+n%2) (MAGMA) [(3^(n+1) + 6 + (-1)^(n+1))/8: n in [0..30]]; // Vincenzo Librandi, Apr 21 2012 CROSSREFS Equals A033113 + 1. Cf. A015518, A023105. Sequence in context: A148161 A148162 A148163 * A118974 A119020 A073191 Adjacent sequences:  A039297 A039298 A039299 * A039301 A039302 A039303 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .