This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A038993 Sublattices of index n in generic 6-dimensional lattice. 2

%I

%S 1,63,364,2667,3906,22932,19608,97155,99463,246078,177156,970788,

%T 402234,1235304,1421784,3309747,1508598,6266169,2613660,10417302,

%U 7137312,11160828,6728904,35364420,12714681

%N Sublattices of index n in generic 6-dimensional lattice.

%D M. Baake, "Solution of coincidence problem...", in R. V. Moody, ed., Math. of Long-Range Aperiodic Order, Kluwer 1997, pp. 9-44.

%H M. Baake, N. Neumarker, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Baake/baake7.html">A Note on the Relation Between Fixed Point and Orbit Count Sequences</a>, JIS 12 (2009) 09.4.4, Section 3.

%H <a href="/index/Su#sublatts">Index entries for sequences related to sublattices</a>

%F f(Q, n)=Sum d*f(Q-1, d), d|n; here Q=6.

%F Multiplicative with a(p^e) = product (p^(e+k)-1)/(p^k-1), k=1..5.

%F Dirichlet g.f. zeta(s)*zeta(s-1)*zeta(s-2)*zeta(s-3)*zeta(s-4)*zeta(s-5). Dirichlet convolution of A038992 with A000584. - R. J. Mathar, Mar 31 2011

%Y Cf. A001001.

%K nonn,mult

%O 1,2

%A _N. J. A. Sloane_.

%E Offset changed from 0 to 1 . - R. J. Mathar, Mar 31 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 20 19:36 EDT 2019. Contains 324234 sequences. (Running on oeis4.)