%I #19 May 24 2022 02:43:57
%S 3,5,17,31,37,47,53,59,61,71,89,97,109,113,127,131,137,139,149,151,
%T 157,163,167,179,181,211,223,229,239,241,271,281,293,307,311,313,331,
%U 337,347,373,389,401,421,433,439
%N Primes p such that 23 is not a square mod p.
%C Inert rational primes in the field Q(sqrt(23)). - _N. J. A. Sloane_, Dec 26 2017
%C Also, only entries p == 1 (mod 4) of the sequence are not squares mod 23 (from the quadratic reciprocity law). - _Lekraj Beedassy_, Jul 21 2004
%H Vincenzo Librandi, <a href="/A038898/b038898.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Pri#primes_decomp_of">Index to sequences related to decomposition of primes in quadratic fields</a>
%t Select[Prime@Range[120], JacobiSymbol[23, #] == -1 &] (* _Vincenzo Librandi_, Sep 08 2012 *)
%K nonn
%O 1,1
%A _N. J. A. Sloane_
%E Offset changed from 0 to 1 by _Vincenzo Librandi_, Sep 08 2012