login
A038802
Factor 2n+1 = (2^m1)*(3^m2)*(5^m3)*...; a(n) = number of initial zero exponents.
8
1, 2, 3, 1, 4, 5, 1, 6, 7, 1, 8, 2, 1, 9, 10, 1, 2, 11, 1, 12, 13, 1, 14, 3, 1, 15, 2, 1, 16, 17, 1, 2, 18, 1, 19, 20, 1, 3, 21, 1, 22, 2, 1, 23, 3, 1, 2, 24, 1, 25, 26, 1, 27, 28, 1, 29, 2, 1, 3, 4, 1, 2, 30, 1, 31, 3, 1, 32, 33, 1, 4, 2, 1, 34, 35, 1, 2, 36
OFFSET
1,2
FORMULA
a(n) = A049084(A020639(2n+1))-1. - R. J. Mathar, Mar 01 2011
EXAMPLE
9 = (2^0)*(3^2), thus a(4) = 1.
MAPLE
A038802 := proc(n) numtheory[factorset](2*n+1) ; min(%); numtheory[pi](%)-1 ; end proc: # R. J. Mathar, Mar 01 2011
MATHEMATICA
Table[f = FactorInteger[2 n + 1]; PrimePi[f[[1, 1]]] - 1, {n, 100}] (* T. D. Noe, Apr 23 2013 *)
PROG
(PARI) lpf(n)=factor(n)[1, 1]
a(n)=primepi(lpf(2*n+1))-1 \\ Charles R Greathouse IV, Jul 29 2016
CROSSREFS
Sequence in context: A104706 A366796 A094137 * A092942 A229137 A358631
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(69) corrected by Rick G. Rosner, Apr 22 2013
STATUS
approved