login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A038791 An intermediate sequence for nonisomorphic circulant p^2-tournaments, indexed by odd primes p. 4
2, 4, 12, 104, 344, 4096, 14572, 190652, 9586984, 35791472, 1908874584, 27487790720, 104715393912, 1529755308212, 86607685141744, 4969489243995032, 19215358410149344, 1117984489315857512, 16865594581677305360, 65588423373189982912 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,1

COMMENTS

Number of subsets of {1, ..., p} with product = 1 mod p, where p is the n-th prime. - Charles R Greathouse IV, Jun 06 2013

LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 2..100

M. Klin, V. A. Liskovets and R. Poeschel, Analytical enumeration of circulant graphs with prime-squared vertices, Sem. Lotharingien de Combin., B36d, 1996, 36 pages.

FORMULA

a(p^2) = A038790(p^2) - A038789(p^2) + A038792(p^2).

MATHEMATICA

has[p_] := Module[{v, u}, v = Table[0, {p-1}]; v[[1]] = 1; For[n = 2, n <= p-1, n++, u = Table[0, {p-1}]; For[j = 1, j <= p-1, j++, u[[Mod[j*n, p]]] += v[[j]]]; v += u]; 2*v[[1]]];

a[n_] := has[Prime[n]];

Table[a[n], {n, 2, 21}] (* Jean-Fran├žois Alcover, Aug 30 2019, after Charles R Greathouse IV *)

PROG

(PARI) has(p)=my(v=vector(p-1), u); v[1]=1; for(n=2, p-1, u=vector(p-1); for(j=1, p-1, u[j*n%p]+=v[j]); v+=u); 2*v[1]

a(n)=has(prime(n)) \\ Charles R Greathouse IV, Jun 06 2013

CROSSREFS

Cf. A038787.

Sequence in context: A309718 A230814 A325502 * A327563 A326950 A001696

Adjacent sequences:  A038788 A038789 A038790 * A038792 A038793 A038794

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, May 04 2000

EXTENSIONS

More terms from Valery A. Liskovets, May 09 2001

a(12)-a(20) from Charles R Greathouse IV, Jun 06 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 22:34 EDT 2019. Contains 328335 sequences. (Running on oeis4.)