

A038772


Numbers not divisible by any of their digits.


27



23, 27, 29, 34, 37, 38, 43, 46, 47, 49, 53, 54, 56, 57, 58, 59, 67, 68, 69, 73, 74, 76, 78, 79, 83, 86, 87, 89, 94, 97, 98, 203, 207, 209, 223, 227, 229, 233, 239, 247, 249, 253, 257, 259, 263, 267, 269, 277, 283, 289, 293, 299, 307, 308, 323, 329, 334, 337, 338
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

A038769(a(n)) = 0; complement of A038770.
This is a regular language when written in decimal, though the minimal regular expression is probably thousands of characters long.  Charles R Greathouse IV, Aug 19 2011
Exponential density 0.954... = A104139. Asymptotically 8/35 * n^0.954... + O(n^0.903...) members up to n.  Charles R Greathouse IV, Jul 22 2012


LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Index entries for 10automatic sequences


EXAMPLE

34 is divisible by neither 3 nor 4.
35 is excluded because 5 is a divisor of 35, but 37 is included because neither 3 nor 7 is a divisor of 37


MATHEMATICA

nddQ[n_]:=Module[{idn=DeleteCases[IntegerDigits[n], 0]}, And@@Table[ !Divisible[n, idn[[i]]], {i, Length[idn]}]]; Select[Range[350], nddQ] (* Harvey P. Dale, Nov 01 2011 *)


PROG

(Haskell)
import Data.Char (digitToInt)
a038772 n = a038772_list !! (n1)
a038772_list = filter p [1..] where
p n = all (> 0) $ map ((mod n) . digitToInt) $ filter (> '0') $ show n
 Reinhard Zumkeller, Jun 19 2011
(PARI) is(n)=my(v=vecsort(eval(Vec(Str(n))), , 8)); for(i=if(v[1], 1, 2), #v, if(n%v[i]==0, return(0))); 1 \\ Charles R Greathouse IV, Jul 22 2011
(MAGMA) [k:k in [1..340] forall{c:c in Set(Intseq(k)) diff {0}k mod c ne 0}]; // Marius A. Burtea, Dec 22 2019
(Python)
def ok(n): return not any(n%int(d) == 0 for d in str(n) if d != '0')
print(list(filter(ok, range(1, 339)))) # Michael S. Branicky, May 20 2021


CROSSREFS

Cf. A327561 (counts), A038770 (complement).
Cf. also A034709, A034837, A038769.
Sequence in context: A316724 A160774 A163142 * A188454 A178960 A282713
Adjacent sequences: A038769 A038770 A038771 * A038773 A038774 A038775


KEYWORD

base,easy,nonn,nice


AUTHOR

Henry Bottomley, May 04 2000


EXTENSIONS

Edited by N. J. A. Sloane, Nov 17 2008 at the suggestion of R. J. Mathar


STATUS

approved



