This site is supported by donations to The OEIS Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A038745 Configurations of linear chains in a 6-dimensional hypercubic lattice. 1
0, 0, 120, 2400, 33960, 441600, 5436960, 64509840, 745845120, 8461348080, 94558053840 (list; graph; refs; listen; history; text; internal format)



In the notation of Nemirovsky et al. (1992), a(n), the n-th term of the current sequence is C_{n,m} with m=1 (and d=6). Here, for a d-dimensional hypercubic lattice, C_{n,m} is "the number of configurations of an n-bond self-avoiding chain with m neighbor contacts." (For d=2, we have C_{n,m=1} = A033155(n); for d=3, we have C_{n, m=1} = A047057(n); for d=4, we have C_{n,m=1} = A042949(n); and for d=5, we have C_{n,m=1} = A038727(n). These values appear in Table 1, pp. 1088-1090, of Nemirovsky et al. (1992).) - Petros Hadjicostas, Jan 06 2019


Table of n, a(n) for n=1..11.

A. M. Nemirovsky, K. F. Freed, T. Ishinabe, and J. F. Douglas, Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 1083-1108; see Eq. 5 (p. 1090) and Eq. 7b (p. 1093).


Cf. A033155, A038727, A042949, A047057.

Sequence in context: A056291 A056286 A166779 * A267839 A220050 A032180

Adjacent sequences:  A038742 A038743 A038744 * A038746 A038747 A038748




N. J. A. Sloane, May 02 2000


a(10)-a(11) copied from Table 1, p. 1090, of Nemirovsky et al. (1992) by Petros Hadjicostas, Jan 06 2019

Name edited by Petros Hadjicostas, Jan 06 2019



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 23:39 EDT 2019. Contains 328211 sequences. (Running on oeis4.)