

A038745


Configurations of linear chains in a 6dimensional hypercubic lattice.


1



0, 0, 120, 2400, 33960, 441600, 5436960, 64509840, 745845120, 8461348080, 94558053840
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

In the notation of Nemirovsky et al. (1992), a(n), the nth term of the current sequence is C_{n,m} with m=1 (and d=6). Here, for a ddimensional hypercubic lattice, C_{n,m} is "the number of configurations of an nbond selfavoiding chain with m neighbor contacts." (For d=2, we have C_{n,m=1} = A033155(n); for d=3, we have C_{n, m=1} = A047057(n); for d=4, we have C_{n,m=1} = A042949(n); and for d=5, we have C_{n,m=1} = A038727(n). These values appear in Table 1, pp. 10881090, of Nemirovsky et al. (1992).)  Petros Hadjicostas, Jan 06 2019


LINKS

Table of n, a(n) for n=1..11.
A. M. Nemirovsky, K. F. Freed, T. Ishinabe, and J. F. Douglas, Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 10831108; see Eq. 5 (p. 1090) and Eq. 7b (p. 1093).


CROSSREFS

Cf. A033155, A038727, A042949, A047057.
Sequence in context: A056291 A056286 A166779 * A267839 A220050 A032180
Adjacent sequences: A038742 A038743 A038744 * A038746 A038747 A038748


KEYWORD

nonn,more


AUTHOR

N. J. A. Sloane, May 02 2000


EXTENSIONS

a(10)a(11) copied from Table 1, p. 1090, of Nemirovsky et al. (1992) by Petros Hadjicostas, Jan 06 2019
Name edited by Petros Hadjicostas, Jan 06 2019


STATUS

approved



