login
A038739
T(n,n-2), array T as in A038738.
2
1, 7, 30, 103, 314, 895, 2455, 6590, 17480, 46070, 121016, 317342, 831465, 2177613, 5702054, 14929365, 39087010, 102332805, 267912735, 701406940, 1836309856, 4807524652, 12586266400, 32951277148, 86267567969, 225851430035
OFFSET
2,2
FORMULA
Sixth diagonal of array defined by T(i, 1)=T(1, j)=1, T(i, j)=Max(T(i-1, j)+T(i-1, j-1); T(i-1, j-1)+T(i, j-1)) - Benoit Cloitre, Aug 05 2003
G.f.: x^2/[(1-3x+x^2)(1-x)^4].
a(n) = Sum_{k=0..n}(binomial(n+3,k+4)*Fibonacci(k)). - Vladimir Kruchinin, Oct 24 2016
PROG
(Maxima)
a(n):=sum(binomial(n+3, k+4)*fib(k), k, 0, n); /* Vladimir Kruchinin, Oct 24 2016 */
CROSSREFS
Sequence in context: A339196 A232093 A045889 * A038798 A276289 A062455
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 02 2000
STATUS
approved