

A038729


Configurations of linear chains in a 6dimensional hypercubic lattice.


2



12, 132, 1332, 13452, 134892, 1353732, 13536612, 135457932, 1352852292, 13517235732, 134908128732
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

In the notation of Nemirovsky et al. (1992), a(n), the nth term of the current sequence is C_{n,m} with m=0 (and d=6). Here, for a ddimensional hypercubic lattice, C_{n,m} is "the number of configurations of an nbond selfavoiding chain with m neighbor contacts." (For d=2, we have C(n,0) = A173380(n); for d=3, we have C(n,0) = A174319(n); for d=4, we have C(n,0) = A034006(n); and for d=5, we have C(n,0) = A038726(n).)  Petros Hadjicostas, Jan 03 2019


LINKS

Table of n, a(n) for n=1..11.
M. E. Fisher and B. J. Hiley, Configuration and free energy of a polymer molecule with solvent interaction, J. Chem. Phys., 34 (1961), 12531267.
A. M. Nemirovsky, K. F. Freed, T. Ishinabe, and J. F. Douglas, Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 10831108; see Eq. 5 (p. 1090) and Table 1 (p. 1090).


CROSSREFS

Cf. A002932, A002934, A034006, A038726, A173380, A174313, A174319.
Sequence in context: A002721 A119217 A119237 * A125447 A162767 A003495
Adjacent sequences: A038726 A038727 A038728 * A038730 A038731 A038732


KEYWORD

nonn,more


AUTHOR

N. J. A. Sloane, May 02 2000


EXTENSIONS

Terms a(10) and a(11) were copied from Table 1 (p. 1090) in the paper by Nemirovsky et al. (1992) by Petros Hadjicostas, Jan 03 2019
Name edited by Petros Hadjicostas, Jan 03 2019


STATUS

approved



