This site is supported by donations to The OEIS Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A038728 Configurations of linear chains in a 5-dimensional hypercubic lattice. 1


%S 0,0,0,0,2240,35840,433040,4862560,51759280,527313040,5218528800

%N Configurations of linear chains in a 5-dimensional hypercubic lattice.

%C In the notation of Nemirovsky et al. (1992), a(n), the n-th term of the current sequence is C_{n,m} with m=2 (and d=5). Here, for a d-dimensional hypercubic lattice, C_{n,m} is "the number of configurations of an n-bond self-avoiding chain with m neighbor contacts." (Let n >= 1. For d=2, we have C(n,m=2) = A033323(n); for d=3, we have C(n,m=2) = A049230(n); and for d=4, we have C(n,m=2) = A046788(n).) - _Petros Hadjicostas_, Jan 05 2019

%H A. M. Nemirovsky, K. F. Freed, T. Ishinabe, and J. F. Douglas, <a href="http://dx.doi.org/10.1007/BF01049010">Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers</a>, J. Statist. Phys., 67 (1992), 1083-1108; see Table 1 on p. 1090.

%Y Cf. A033323, A046788, A049230.

%K nonn,more

%O 1,5

%A _N. J. A. Sloane_, May 02 2000

%E Terms a(10) and a(11) were copied from Table 1 (p. 1090) of Nemirovsky et al. (1992) by _Petros Hadjicostas_, Jan 05 2019

%E Name edited by _Petros Hadjicostas_, Jan 05 2019

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 22 16:34 EDT 2019. Contains 325224 sequences. (Running on oeis4.)