

A038728


Configurations of linear chains in a 5dimensional hypercubic lattice.


1



0, 0, 0, 0, 2240, 35840, 433040, 4862560, 51759280, 527313040, 5218528800
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,5


COMMENTS

In the notation of Nemirovsky et al. (1992), a(n), the nth term of the current sequence is C_{n,m} with m=2 (and d=5). Here, for a ddimensional hypercubic lattice, C_{n,m} is "the number of configurations of an nbond selfavoiding chain with m neighbor contacts." (Let n >= 1. For d=2, we have C(n,m=2) = A033323(n); for d=3, we have C(n,m=2) = A049230(n); and for d=4, we have C(n,m=2) = A046788(n).)  Petros Hadjicostas, Jan 05 2019


LINKS

Table of n, a(n) for n=1..11.
A. M. Nemirovsky, K. F. Freed, T. Ishinabe, and J. F. Douglas, Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 10831108; see Table 1 on p. 1090.


CROSSREFS

Cf. A033323, A046788, A049230.
Sequence in context: A289454 A079013 A186865 * A002520 A183771 A271470
Adjacent sequences: A038725 A038726 A038727 * A038729 A038730 A038731


KEYWORD

nonn,more


AUTHOR

N. J. A. Sloane, May 02 2000


EXTENSIONS

Terms a(10) and a(11) were copied from Table 1 (p. 1090) of Nemirovsky et al. (1992) by Petros Hadjicostas, Jan 05 2019
Name edited by Petros Hadjicostas, Jan 05 2019


STATUS

approved



