login
A038727
Configurations of linear chains in a 5-dimensional hypercubic lattice
1
0, 0, 80, 1280, 14320, 148480, 1459840, 13835680, 127784640, 1158460000, 10342876480, 91312921760, 798077066720, 6922857067840
OFFSET
1,3
COMMENTS
In the notation of Nemirovsky et al. (1992), a(n), the n-th term of the current sequence is C_{n,m} with m=1 (and d=5). Here, for a d-dimensional hypercubic lattice, C_{n,m} is "the number of configurations of an n-bond self-avoiding chain with m neighbor contacts." (For d=2, we have C_{n,m=1} = A033155(n); for d=3, we have C_{n, m=1} = A047057(n); for d=4, we have C_{n,m=1} = A042949(n); and for d=6, we have C_{n,m=1} = A038745(n). These values appear in Table 1, pp. 1088-1090, of Nemirovsky et al. (1992).) - Petros Hadjicostas, Jan 06 2019
LINKS
A. M. Nemirovsky, K. F. Freed, T. Ishinabe, and J. F. Douglas, Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 1083-1108.
CROSSREFS
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, May 02 2000
EXTENSIONS
Name was edited by Petros Hadjicostas, Jan 06 2019
Terms a(10) and a(11) were copied from Table I, p. 1090, in Nemirovsky et al. (1992) by Petros Hadjicostas, Jan 06 2019
a(12)-a(14) from Sean A. Irvine, Jan 31 2021
STATUS
approved