|
|
A038727
|
|
Configurations of linear chains in a 5-dimensional hypercubic lattice
|
|
1
|
|
|
0, 0, 80, 1280, 14320, 148480, 1459840, 13835680, 127784640, 1158460000, 10342876480, 91312921760, 798077066720, 6922857067840
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
In the notation of Nemirovsky et al. (1992), a(n), the n-th term of the current sequence is C_{n,m} with m=1 (and d=5). Here, for a d-dimensional hypercubic lattice, C_{n,m} is "the number of configurations of an n-bond self-avoiding chain with m neighbor contacts." (For d=2, we have C_{n,m=1} = A033155(n); for d=3, we have C_{n, m=1} = A047057(n); for d=4, we have C_{n,m=1} = A042949(n); and for d=6, we have C_{n,m=1} = A038745(n). These values appear in Table 1, pp. 1088-1090, of Nemirovsky et al. (1992).) - Petros Hadjicostas, Jan 06 2019
|
|
LINKS
|
Table of n, a(n) for n=1..14.
A. M. Nemirovsky, K. F. Freed, T. Ishinabe, and J. F. Douglas, Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 1083-1108.
|
|
CROSSREFS
|
Cf. A033155, A038745, A042949, A047057.
Sequence in context: A168364 A296353 A126861 * A204476 A151603 A199533
Adjacent sequences: A038724 A038725 A038726 * A038728 A038729 A038730
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
N. J. A. Sloane, May 02 2000
|
|
EXTENSIONS
|
Name was edited by Petros Hadjicostas, Jan 06 2019
Terms a(10) and a(11) were copied from Table I, p. 1090, in Nemirovsky et al. (1992) by Petros Hadjicostas, Jan 06 2019
a(12)-a(14) from Sean A. Irvine, Jan 31 2021
|
|
STATUS
|
approved
|
|
|
|