This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A038726 Configurations of linear chains in a 5-dimensional hypercubic lattice. 3
 10, 90, 730, 5930, 47690, 384090, 3075610, 24663210, 197117210, 1576845050, 12589411530 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS In the notation of Nemirovsky et al. (1992), a(n), the n-th term of the current sequence is C_{n,m} with m=0 (and d=5). Here, for a d-dimensional hypercubic lattice, C_{n,m} is "the number of configurations of an n-bond self-avoiding chain with m neighbor contacts." (For d=2, we have C(n,0) = A173380(n); for d=3, we have C(n,0) = A174319(n); and for d=4, we have C(n,0) = A034006(n).) - Petros Hadjicostas, Jan 02 2019 LINKS A. M. Nemirovsky, K. F. Freed, T. Ishinabe, and J. F. Douglas, Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 1083-1108; see Table I and Eq. 5 on p. 1090 (the case d=5). FORMULA a(n) = 10 + 80*A038746(n) + 480*A038748(n) + 1920*A323037(n) + 3840*A323063(n). (It can be proved using Eq. (5), p. 1090, in the paper by Nemirovsky et al. (1992).) - Petros Hadjicostas, Jan 03 2019 CROSSREFS Cf. A034006, A038746, A038748,  A173380, A174319, A323037, A323063. Sequence in context: A319874 A159733 A265325 * A009454 A231530 A242652 Adjacent sequences:  A038723 A038724 A038725 * A038727 A038728 A038729 KEYWORD nonn,more AUTHOR N. J. A. Sloane, May 02 2000 EXTENSIONS Name edited by Petros Hadjicostas, Jan 02 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 22 02:02 EDT 2019. Contains 325210 sequences. (Running on oeis4.)