login
a(n) = (n+3)*n!/2.
15

%I #44 Dec 11 2022 05:59:57

%S 2,5,18,84,480,3240,25200,221760,2177280,23587200,279417600,

%T 3592512000,49816166400,741015475200,11769069312000,198766503936000,

%U 3556874280960000,67224923910144000,1338096104497152000,27978373094031360000,613091306060513280000

%N a(n) = (n+3)*n!/2.

%C Next-to-last diagonal of A038719.

%C a(n-1) is the sum of the n-th entries in all cycles of all permutations of [n]. a(2) = 5 because the sum of the third entries in all cycles of all permutations of [3] ((123), (132), (12)(3), (13)(2), (1)(23), (1)(2)(3)) is 3+2+0+0+0+0 = 5. - _Alois P. Heinz_, May 03 2017

%H Reinhard Zumkeller, <a href="/A038720/b038720.txt">Table of n, a(n) for n = 1..1000</a>

%H Rajesh Kumar Mohapatra and Tzung-Pei Hong, <a href="https://doi.org/10.3390/math10071161">On the Number of Finite Fuzzy Subsets with Analysis of Integer Sequences</a>, Mathematics (2022) Vol. 10, No. 7, 1161.

%H R. B. Nelsen and H. Schmidt, Jr., <a href="http://www.jstor.org/stable/2690450">Chains in power sets</a>, Math. Mag., 64 (1991), 23-31.

%H <a href="/index/Pos#posets">Index entries for sequences related to posets</a>.

%F a(n) = A052572(n)/2.

%F a(n) = A214178(n+3,n). - _Reinhard Zumkeller_, Jul 08 2012

%F G.f.: Sum_{n>=1} ( (n+1)*x/(1 + (n+1)*x) )^n. - _Paul D. Hanna_, Jan 02 2013

%F E.g.f.: 1/(1-x)+1/(2*(x-1)^2)-3/2. - _Alois P. Heinz_, May 04 2017

%F From _Amiram Eldar_, Dec 11 2022: (Start)

%F Sum_{n>=1} 1/a(n) = 2*e - 14/3.

%F Sum_{n>=1} (-1)^(n+1)/a(n) = 10/e - 10/3. (End)

%t Array[(# + 3) #!/2 &, 21] (* _Michael De Vlieger_, Apr 28 2022 *)

%o (Haskell)

%o import Data.List (transpose)

%o a038720 n = a038720_list !! (n-1)

%o a038720_list = (transpose $ map reverse a038719_tabl) !! 1

%o -- _Reinhard Zumkeller_, Jul 08 2012

%Y Cf. A038719, A038721, A052572, A214178.

%Y Main diagonal of A285793.

%K nonn,easy

%O 1,1

%A _N. J. A. Sloane_, May 02 2000

%E Corrected and extended by Larry Reeves (larryr(AT)acm.org), May 09 2000.