

A038697


Convolution of A000917 with A000984 (central binomial coefficients).


1



3, 26, 163, 894, 4558, 22196, 104739, 483062, 2189530, 9789900, 43295118, 189749676, 825364668, 3567219688, 15332925731, 65591312550, 279415474594, 1185903736412, 5016725589402, 21159849864964, 89012979703940
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Also convolution of A007054 (Super ballot numbers) with A002697;


LINKS

Robert Israel, Table of n, a(n) for n = 0..1652


FORMULA

a(n) = n*4^(n+1)+binomial(2*n+3, n+1).
G.f.: c(x)*(4c(x))/(14*x)^2, where c(x) = g.f. for Catalan numbers A000108.
(160+64*n)*a(n)  (160+48*n)*a(n+1) + (50+12*n)*a(n+2)  (5+n)*a(n+3)=0.  Robert Israel, May 22 2019


MAPLE

seq(n*4^(n+1)+binomial(2*n+3, n+1), n=0..30); # Robert Israel, May 22 2019


CROSSREFS

Cf. A007054, A038665, A038679, A000917, A000108, A000984, A002697.
Sequence in context: A265467 A252872 A121626 * A226351 A091262 A121121
Adjacent sequences: A038694 A038695 A038696 * A038698 A038699 A038700


KEYWORD

easy,nonn


AUTHOR

Wolfdieter Lang


STATUS

approved



