login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A038618 Primes not containing the decimal digit 0, a.k.a. zeroless or zerofree primes. 43
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Complement of A056709 with respect to primes (A000040). - Lekraj Beedassy, Jul 04 2010

Maynard proves that this sequence is infinite and in particular contains the expected number of elements up to x, on the order of x^(log 9/log 10)/log x. - Charles R Greathouse IV, Apr 08 2016

LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 1..10000

M. F. Hasler, Numbers avoiding certain digits, OEIS Wiki, Jan 12 2020.

James Maynard, Primes with restricted digits, arXiv:1604.01041 [math.NT], 2016.

James Maynard and Brady Haran, Primes without a 7, Numberphile video (2019).

Eric Weisstein's World of Mathematics, Zerofree

FORMULA

Intersection of A052382 (zeroless numbers) and A000040 (primes); A168046(a(n))*A010051(a(n)) = 1. - Reinhard Zumkeller, Dec 01 2009

MATHEMATICA

Select[Prime[Range[70]], DigitCount[#, 10, 0] == 0 &] (* Vincenzo Librandi, Aug 09 2011 *)

PROG

(Magma) [ p: p in PrimesUpTo(300) | not 0 in Intseq(p) ]; // Bruno Berselli, Aug 08 2011

(PARI) is(n)=if(isprime(n), n=vecsort(eval(Vec(Str(n))), , 8); n[1]>0) \\ Charles R Greathouse IV, Aug 09 2011

(PARI) lista(nn) = forprime (p=2, nn, if (vecmin(digits(p)), print1(p, ", "))); \\ Michel Marcus, Apr 06 2016

(PARI) {next_A038618(n)=until(vecmin(digits(n=nextprime(next_A052382(n)))), ); n} \\ Cf. OEIS Wiki page (LINKS) for other programs. - M. F. Hasler, Jan 12 2020

(Haskell)

a038618 n = a038618_list !! (n-1)

a038618_list = filter ((== 1) . a168046) a000040_list

-- Reinhard Zumkeller, Apr 07 2014, Sep 27 2011

(Python)

from sympy import primerange

def aupto(N): return [p for p in primerange(1, N+1) if '0' not in str(p)]

print(aupto(300)) # Michael S. Branicky, Mar 11 2022

CROSSREFS

Cf. A010051, A168046.

Subsequence of A000040 (primes), A052382 (zeroless numbers) and A195943.

Primes having no digit d = 0..9 are this sequence, A038603, A038604, A038611, A038612, A038613, A038614, A038615, A038616, and A038617, respectively.

Sequence in context: A052085 A082646 A231588 * A030475 A069676 A062353

Adjacent sequences: A038615 A038616 A038617 * A038619 A038620 A038621

KEYWORD

nonn,easy,base

AUTHOR

Vasiliy Danilov (danilovv(AT)usa.net), Jul 15 1998

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 30 12:56 EST 2023. Contains 359945 sequences. (Running on oeis4.)