login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A038614 Primes not containing digit '6'. 3
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 271, 277, 281, 283, 293, 307, 311 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Subsequence of primes of A052414. - Michel Marcus, Feb 22 2015

Maynard proves that this sequence is infinite and in particular contains the expected number of elements up to x, on the order of x^(log 9/log 10)/log x. - Charles R Greathouse IV, Apr 08 2016

LINKS

Table of n, a(n) for n=1..58.

James Maynard, Primes with restricted digits, arXiv:1604.01041 [math.NT], 2016.

MATHEMATICA

Select[Prime[Range[70]], DigitCount[#, 10, 6] == 0 &] (* Vincenzo Librandi, Aug 08 2011 *)

PROG

(MAGMA) [ p: p in PrimesUpTo(400) | not 6 in Intseq(p) ]; // Bruno Berselli, Aug 08 2011

(PARI) lista(nn)=forprime(p=2, nn, if (!vecsearch(vecsort(digits(p), , 8), 6), print1(p, ", ")); ); \\ Michel Marcus, Feb 22 2015

CROSSREFS

Cf. A000040, A052414.

Sequence in context: A118850 A219697 A078668 * A171047 A050246 A229106

Adjacent sequences:  A038611 A038612 A038613 * A038615 A038616 A038617

KEYWORD

nonn,easy,base

AUTHOR

Vasiliy Danilov (danilovv(AT)usa.net), Jul 1998

EXTENSIONS

Offset corrected by Arkadiusz Wesolowski, Aug 07 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 10 07:27 EST 2016. Contains 278993 sequences.