The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A038553 Maximum cycle length in differentiation digraph for n-bit binary sequences. 5
 1, 1, 3, 1, 15, 6, 7, 1, 63, 30, 341, 12, 819, 14, 15, 1, 255, 126, 9709, 60, 63, 682, 2047, 24, 25575, 1638, 13797, 28, 475107, 30, 31, 1, 1023, 510, 4095, 252, 3233097, 19418, 4095, 120, 41943, 126, 5461, 1364, 4095, 4094, 8388607, 48, 2097151, 51150, 255, 3276, 3556769739, 27594, 1048575 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Length of longest cycle for vectors of length n under the Ducci map. Also, the period of polynomial (x+1)^n+1 over GF(2) (cf. A046932). - Max Alekseyev, Oct 12 2013 REFERENCES Simmons, G. J., The structure of the differentiation digraphs of binary sequences. Ars Combin. 35 (1993), A, 71-88. Math. Rev. 95f:05052. LINKS Max Alekseyev, Table of n, a(n) for n = 1..2458 Florian Breuer, Igor E. Shparlinski, Lower bounds for periods of Ducci sequences, arXiv:1909.04462 [math.NT], 2019. N. J. Calkin, J. G. Stevens, D. M. Thomas, A characterization for the lengths of cycles of the n-number Ducci game, Fib. Q., 43 (No. 1, 2005), 53-59. O. N. Karpenkov, On examples of difference operators for {0,1}-valued functions over finite sets, Funct. Anal. Other Math. 1 (2006), 175-180. [Gives incorrect value 4095 for a(46).] CROSSREFS Cf. A111944, A135547 Sequence in context: A089463 A136231 A113389 * A282629 A135896 A134144 Adjacent sequences:  A038550 A038551 A038552 * A038554 A038555 A038556 KEYWORD nonn AUTHOR EXTENSIONS Entry revised by N. J. A. Sloane, Jun 19 2006, Feb 24 2008 a(46) corrected, terms a(51) onward and b-file added by Max Alekseyev, Oct 12 2013 b-file extended by Max Alekseyev, Sep 24 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 3 13:49 EDT 2020. Contains 336198 sequences. (Running on oeis4.)